Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice.

Identifieur interne : 000506 ( Main/Exploration ); précédent : 000505; suivant : 000507

Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice.

Auteurs : Ayako Nishizawa-Yokoi [Japon] ; Satoko Nonaka ; Hiroaki Saika ; Yong-Ik Kwon ; Keishi Osakabe ; Seiichi Toki

Source :

RBID : pubmed:23050791

Descripteurs français

English descriptors

Abstract

Evidence for the involvement of the nonhomologous end joining (NHEJ) pathway in Agrobacterium-mediated transferred DNA (T-DNA) integration into the genome of the model plant Arabidopsis remains inconclusive. Having established a rapid and highly efficient Agrobacterium-mediated transformation system in rice (Oryza sativa) using scutellum-derived calli, we examined here the involvement of the NHEJ pathway in Agrobacterium-mediated stable transformation in rice. Rice calli from OsKu70, OsKu80 and OsLig4 knockdown (KD) plants were infected with Agrobacterium harboring a sensitive emerald luciferase (LUC) reporter construct to evaluate stable expression and a green fluorescent protein (GFP) construct to monitor transient expression of T-DNA. Transient expression was not suppressed, but stable expression was reduced significantly, in KD plants. Furthermore, KD-Ku70 and KD-Lig4 calli exhibited an increase in the frequency of homologous recombination (HR) compared with control calli. In addition, suppression of OsKu70, OsKu80 and OsLig4 induced the expression of HR-related genes on treatment with DNA-damaging agents. Our findings suggest strongly that NHEJ is involved in Agrobacterium-mediated stable transformation in rice, and that there is a competitive and complementary relationship between the NHEJ and HR pathways for DNA double-strand break repair in rice.

DOI: 10.1111/j.1469-8137.2012.04350.x
PubMed: 23050791
PubMed Central: PMC3532656


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice.</title>
<author>
<name sortKey="Nishizawa Yokoi, Ayako" sort="Nishizawa Yokoi, Ayako" uniqKey="Nishizawa Yokoi A" first="Ayako" last="Nishizawa-Yokoi">Ayako Nishizawa-Yokoi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, Ibaraki, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, Ibaraki</wicri:regionArea>
<wicri:noRegion>Ibaraki</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nonaka, Satoko" sort="Nonaka, Satoko" uniqKey="Nonaka S" first="Satoko" last="Nonaka">Satoko Nonaka</name>
</author>
<author>
<name sortKey="Saika, Hiroaki" sort="Saika, Hiroaki" uniqKey="Saika H" first="Hiroaki" last="Saika">Hiroaki Saika</name>
</author>
<author>
<name sortKey="Kwon, Yong Ik" sort="Kwon, Yong Ik" uniqKey="Kwon Y" first="Yong-Ik" last="Kwon">Yong-Ik Kwon</name>
</author>
<author>
<name sortKey="Osakabe, Keishi" sort="Osakabe, Keishi" uniqKey="Osakabe K" first="Keishi" last="Osakabe">Keishi Osakabe</name>
</author>
<author>
<name sortKey="Toki, Seiichi" sort="Toki, Seiichi" uniqKey="Toki S" first="Seiichi" last="Toki">Seiichi Toki</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23050791</idno>
<idno type="pmid">23050791</idno>
<idno type="doi">10.1111/j.1469-8137.2012.04350.x</idno>
<idno type="pmc">PMC3532656</idno>
<idno type="wicri:Area/Main/Corpus">000490</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000490</idno>
<idno type="wicri:Area/Main/Curation">000490</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000490</idno>
<idno type="wicri:Area/Main/Exploration">000490</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice.</title>
<author>
<name sortKey="Nishizawa Yokoi, Ayako" sort="Nishizawa Yokoi, Ayako" uniqKey="Nishizawa Yokoi A" first="Ayako" last="Nishizawa-Yokoi">Ayako Nishizawa-Yokoi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, Ibaraki, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, Ibaraki</wicri:regionArea>
<wicri:noRegion>Ibaraki</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nonaka, Satoko" sort="Nonaka, Satoko" uniqKey="Nonaka S" first="Satoko" last="Nonaka">Satoko Nonaka</name>
</author>
<author>
<name sortKey="Saika, Hiroaki" sort="Saika, Hiroaki" uniqKey="Saika H" first="Hiroaki" last="Saika">Hiroaki Saika</name>
</author>
<author>
<name sortKey="Kwon, Yong Ik" sort="Kwon, Yong Ik" uniqKey="Kwon Y" first="Yong-Ik" last="Kwon">Yong-Ik Kwon</name>
</author>
<author>
<name sortKey="Osakabe, Keishi" sort="Osakabe, Keishi" uniqKey="Osakabe K" first="Keishi" last="Osakabe">Keishi Osakabe</name>
</author>
<author>
<name sortKey="Toki, Seiichi" sort="Toki, Seiichi" uniqKey="Toki S" first="Seiichi" last="Toki">Seiichi Toki</name>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium (genetics)</term>
<term>DNA Breaks, Double-Stranded (MeSH)</term>
<term>DNA End-Joining Repair (genetics)</term>
<term>DNA Helicases (genetics)</term>
<term>DNA Helicases (metabolism)</term>
<term>DNA Ligase ATP (MeSH)</term>
<term>DNA Ligases (genetics)</term>
<term>DNA Ligases (metabolism)</term>
<term>DNA Repair (MeSH)</term>
<term>DNA, Bacterial (MeSH)</term>
<term>DNA-Binding Proteins (genetics)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Knockdown Techniques (MeSH)</term>
<term>Green Fluorescent Proteins (genetics)</term>
<term>Green Fluorescent Proteins (metabolism)</term>
<term>Homologous Recombination (MeSH)</term>
<term>Oryza (genetics)</term>
<term>Oryza (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Transformation, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN bactérien (MeSH)</term>
<term>Agrobacterium (génétique)</term>
<term>Cassures double-brin de l'ADN (MeSH)</term>
<term>DNA ligase ATP (MeSH)</term>
<term>DNA ligases (génétique)</term>
<term>DNA ligases (métabolisme)</term>
<term>Helicase (génétique)</term>
<term>Helicase (métabolisme)</term>
<term>Oryza (génétique)</term>
<term>Oryza (métabolisme)</term>
<term>Protéines de liaison à l'ADN (génétique)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéines à fluorescence verte (génétique)</term>
<term>Protéines à fluorescence verte (métabolisme)</term>
<term>Recombinaison homologue (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Réparation de l'ADN (MeSH)</term>
<term>Réparation de l'ADN par jonction d'extrémités (génétique)</term>
<term>Techniques de knock-down de gènes (MeSH)</term>
<term>Transformation génétique (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Helicases</term>
<term>DNA Ligases</term>
<term>DNA-Binding Proteins</term>
<term>Green Fluorescent Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium</term>
<term>DNA End-Joining Repair</term>
<term>Oryza</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Agrobacterium</term>
<term>DNA ligases</term>
<term>Helicase</term>
<term>Oryza</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines végétales</term>
<term>Protéines à fluorescence verte</term>
<term>Réparation de l'ADN par jonction d'extrémités</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA Helicases</term>
<term>DNA Ligases</term>
<term>DNA-Binding Proteins</term>
<term>Green Fluorescent Proteins</term>
<term>Oryza</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>DNA ligases</term>
<term>Helicase</term>
<term>Oryza</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines végétales</term>
<term>Protéines à fluorescence verte</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>DNA Breaks, Double-Stranded</term>
<term>DNA Ligase ATP</term>
<term>DNA Repair</term>
<term>DNA, Bacterial</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Knockdown Techniques</term>
<term>Homologous Recombination</term>
<term>Plants, Genetically Modified</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN bactérien</term>
<term>Cassures double-brin de l'ADN</term>
<term>DNA ligase ATP</term>
<term>Recombinaison homologue</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Réparation de l'ADN</term>
<term>Techniques de knock-down de gènes</term>
<term>Transformation génétique</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Evidence for the involvement of the nonhomologous end joining (NHEJ) pathway in Agrobacterium-mediated transferred DNA (T-DNA) integration into the genome of the model plant Arabidopsis remains inconclusive. Having established a rapid and highly efficient Agrobacterium-mediated transformation system in rice (Oryza sativa) using scutellum-derived calli, we examined here the involvement of the NHEJ pathway in Agrobacterium-mediated stable transformation in rice. Rice calli from OsKu70, OsKu80 and OsLig4 knockdown (KD) plants were infected with Agrobacterium harboring a sensitive emerald luciferase (LUC) reporter construct to evaluate stable expression and a green fluorescent protein (GFP) construct to monitor transient expression of T-DNA. Transient expression was not suppressed, but stable expression was reduced significantly, in KD plants. Furthermore, KD-Ku70 and KD-Lig4 calli exhibited an increase in the frequency of homologous recombination (HR) compared with control calli. In addition, suppression of OsKu70, OsKu80 and OsLig4 induced the expression of HR-related genes on treatment with DNA-damaging agents. Our findings suggest strongly that NHEJ is involved in Agrobacterium-mediated stable transformation in rice, and that there is a competitive and complementary relationship between the NHEJ and HR pathways for DNA double-strand break repair in rice.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23050791</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>04</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>196</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2012</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice.</ArticleTitle>
<Pagination>
<MedlinePgn>1048-59</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1469-8137.2012.04350.x</ELocationID>
<Abstract>
<AbstractText>Evidence for the involvement of the nonhomologous end joining (NHEJ) pathway in Agrobacterium-mediated transferred DNA (T-DNA) integration into the genome of the model plant Arabidopsis remains inconclusive. Having established a rapid and highly efficient Agrobacterium-mediated transformation system in rice (Oryza sativa) using scutellum-derived calli, we examined here the involvement of the NHEJ pathway in Agrobacterium-mediated stable transformation in rice. Rice calli from OsKu70, OsKu80 and OsLig4 knockdown (KD) plants were infected with Agrobacterium harboring a sensitive emerald luciferase (LUC) reporter construct to evaluate stable expression and a green fluorescent protein (GFP) construct to monitor transient expression of T-DNA. Transient expression was not suppressed, but stable expression was reduced significantly, in KD plants. Furthermore, KD-Ku70 and KD-Lig4 calli exhibited an increase in the frequency of homologous recombination (HR) compared with control calli. In addition, suppression of OsKu70, OsKu80 and OsLig4 induced the expression of HR-related genes on treatment with DNA-damaging agents. Our findings suggest strongly that NHEJ is involved in Agrobacterium-mediated stable transformation in rice, and that there is a competitive and complementary relationship between the NHEJ and HR pathways for DNA double-strand break repair in rice.</AbstractText>
<CopyrightInformation>© 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nishizawa-Yokoi</LastName>
<ForeName>Ayako</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences, Ibaraki, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nonaka</LastName>
<ForeName>Satoko</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Saika</LastName>
<ForeName>Hiroaki</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kwon</LastName>
<ForeName>Yong-Ik</ForeName>
<Initials>YI</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Osakabe</LastName>
<ForeName>Keishi</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Toki</LastName>
<ForeName>Seiichi</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>10</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C036483">T-DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.-</RegistryNumber>
<NameOfSubstance UI="D004265">DNA Helicases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.5.1.-</RegistryNumber>
<NameOfSubstance UI="D011088">DNA Ligases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.5.1.1</RegistryNumber>
<NameOfSubstance UI="D000072481">DNA Ligase ATP</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060054" MajorTopicYN="N">Agrobacterium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053903" MajorTopicYN="N">DNA Breaks, Double-Stranded</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059766" MajorTopicYN="N">DNA End-Joining Repair</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004265" MajorTopicYN="N">DNA Helicases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072481" MajorTopicYN="N">DNA Ligase ATP</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011088" MajorTopicYN="N">DNA Ligases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004260" MajorTopicYN="N">DNA Repair</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055785" MajorTopicYN="N">Gene Knockdown Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059765" MajorTopicYN="Y">Homologous Recombination</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="Y">Transformation, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>07</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>08</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23050791</ArticleId>
<ArticleId IdType="doi">10.1111/j.1469-8137.2012.04350.x</ArticleId>
<ArticleId IdType="pmc">PMC3532656</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4941-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19258454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1999 Jun;63(2):349-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10357855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Sep;47(6):969-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16961734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 May 28;396(2):289-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20406622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Oct;47(10):839-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20659576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Mar;69(6):967-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22092531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2011 Jun 3;711(1-2):61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21329706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2002 Dec;3(12):1152-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Apr 15;186(8):4541-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21398614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Nov;74(4-5):453-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20844935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Oct;64(2):280-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21070408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):10004-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21613568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2009 Feb;41(2):106-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18759011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Nov;68(4-5):479-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18695945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2003 Jan 2;302(1-2):53-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12527196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Sep;25(6):989-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7919218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Aug 1;30(15):3395-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12140324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Aug;1809(8):388-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21296691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2011 Jun 10;10(6):611-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21530420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2010 Nov;24(11):4271-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20570964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jan;152(1):374-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19923234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007;2(5):e430</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17487278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Jul 20;43(28):8957-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15248753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2010;48:45-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20337518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2006 Apr 20;122(4):521-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16271791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2004 May;566(3):231-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15082239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 May;14(5):1121-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12034901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Mar;29(6):771-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12148535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Nov;36(19):6333-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18835848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Feb;16(2):342-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Dev. 1999 Apr;82(1-2):3-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10354467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Sep;35(5):557-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12940949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2008 Jan;18(1):134-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18157161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Dec;48(6):947-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17227549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Dec;192(4):805-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2012 Jun;39(6):917-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22350115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Jan;32(1):76-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22037767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Oct;48(10):939-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21704178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 May 14;93(10):5055-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8643528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Dec;48(6):827-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17227544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1988 Dec 20;7(13):4021-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Oct;24(1):67-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11029705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 15;31(14):4247-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12853643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 May;34(4):427-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Oct 15;17(20):6086-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9774352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2010 Mar 17;29(6):1021-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20150897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1985 Sep 19-25;317(6034):230-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2995814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Mar;62(5):1545-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21220780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8703-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Dec 15;15(24):3237-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Oct 14;266(5183):288-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7939667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2010;44:113-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20690856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1990 Oct;9(10):3077-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2209538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2010 Sep 10;691(1-2):55-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20670635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12248-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Feb 15;31(4):1148-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2004 Dec;32(Pt 6):964-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15506937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 Jan;45(1):68-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17716934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2010 Nov;284(5):357-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20853009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Dec;39(22):9605-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21880593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19231-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16380432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Jan;108(2):306-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14504746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2011;45:247-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21910633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2005 Feb 23;53(4):1022-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15713015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2001 Apr;2(4):287-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11306548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8929-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8799130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Res. 2003 Oct;1(12):913-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14573792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Apr;45(4):490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15111724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:443</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20646326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2004 Apr;15(2):132-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15081051</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Kwon, Yong Ik" sort="Kwon, Yong Ik" uniqKey="Kwon Y" first="Yong-Ik" last="Kwon">Yong-Ik Kwon</name>
<name sortKey="Nonaka, Satoko" sort="Nonaka, Satoko" uniqKey="Nonaka S" first="Satoko" last="Nonaka">Satoko Nonaka</name>
<name sortKey="Osakabe, Keishi" sort="Osakabe, Keishi" uniqKey="Osakabe K" first="Keishi" last="Osakabe">Keishi Osakabe</name>
<name sortKey="Saika, Hiroaki" sort="Saika, Hiroaki" uniqKey="Saika H" first="Hiroaki" last="Saika">Hiroaki Saika</name>
<name sortKey="Toki, Seiichi" sort="Toki, Seiichi" uniqKey="Toki S" first="Seiichi" last="Toki">Seiichi Toki</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Nishizawa Yokoi, Ayako" sort="Nishizawa Yokoi, Ayako" uniqKey="Nishizawa Yokoi A" first="Ayako" last="Nishizawa-Yokoi">Ayako Nishizawa-Yokoi</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000506 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000506 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23050791
   |texte=   Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23050791" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024